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In this paper we present new exact results for single fully directed walks and
fully directed vesicles near an attractive wall. This involves a novel method of
solution for these types of problems. The major advantage of this method is that
it, unlike many other single-walker methods, generalizes to an arbitrary number
of walkers. The method of solution involves solving a set of partial difference
equations with a Bethe Ansatz. The solution is expressed as a "constant-term"
formula which evaluates to sums of products of binomial coefficients. The vesicle
critical temperature is found at which a binding transition takes place, and the
asymptotic forms of the associated partition functions are found to have three
different entropic exponents depending on whether the temperature is above,
below, or at its critical value. The expected number of monomers adsorbed onto
the surface is found to become proportional to the vesicle length at temperatures
below critical. Scaling functions near the critical point are determined.
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1. INTRODUCTION

A vesicle with a preferred direction, or "directed vesicle," can be modeled
by a pair of fully directed polymer chains joined in parallel where only con-
figurations in which the chains avoid one another are allowed. In two
dimensions the configurations of a single chain can be assumed to be the
possible space-time trajectories of a one dimensional random walker who
at each tick of a clock moves unit distance in either the positive or negative
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direction. The links of the chain are therefore in the direction of one of the
two vectors e1 = { — 1, 1} and e2 = {1, 1} which form the basis vectors of a
directed square lattice which we think of as being oriented at 45 degrees to
the horizontal so that time increases from left to right. Since the first and
last link in each chain of the vesicle have fixed directions due to the mutual
avoidance condition the configurations of a pair of walkers which start at
height x' and x' + 2 and end at xf and xf + 2 after t steps will be
enumerated corresponding to a vesicle of length t + 2. The adsorption of
the vesicle by an attractive wall will be considered so that in calculating the
partition function a vesicle configuration with m monomers adsorbed onto
the wall will be given weight Km where K = e x p ( — e s / k B T ) > 1. The quantity
es is the energy of contact with the wall. The wall will be positioned along
the line x = 0 with the vesicle restricted to the half space x ^ 0 and if the
beginning of the vesicle is grafted to the wall only monomers at even dis-
tances along the chain may be adsorbed (see Fig. 1). Earlier work on
polymer networks made from long chains in a good solvent both in the
bulk and with a surface has recently been reviewed by De'Bell and
Lookman.(1) Adsorption of directed polymer chains onto a surface has
been reviewed by Privman and Svrakic.(2) They determined the grand par-
tition function of a partially directed polymer chain near an attractive wall
and the same system with additional attractive monomer-monomer inter-
actions was solved exactly by Veal et. al.(3) The adsorption of vesicles
formed from two partially directed chains was investigated numerically
using a transfer matrix method by Micheletti and Yeomans.(4) They also
included the effect of a pressure difference between the inside and outside
of the vesicle by introducing an area fugacity. Their vesicle configurations
correspond to row convex polygons whereas the ones considered here are
staircase polygons.

Fig. 1. Two non-intersecting directed walks above a wall (left) and (right) a vesicle made by
adding two pairs of steps (grey) to two non-intersecting walks starting and ending a distance
two apart.
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In this paper we calculate the partition functions for various configu-
rations of vesicles constructed from two fully directed walks as explained
above. Before doing this we tackle the problem of a single chain made from
a single directed walk. The problem of a single polymer chain has been
considered previously: this problem has been modeled in several other
ways such as continuous chains(5) and partially-directed walks (see ref. 2
and references therein). In this paper we consider another way of modeling
a single chain which is the fully directed walk. The principal advantage of
this model is that it leads to the solution of the vesicle model. It also
provides a confirmation of universality in this problem. We give a complete
list of results for the actual partition functions (and critical analysis) for
these fully directed walks: such explicit formulae have not been published
previously. The sections on the single walk then serve several purposes.
They firstly give these explicit results for the partition functions of various
standard single chain scenarios. They explain the method we later use to
solve the vesicle and two chain problems. In this regard they also give
intermediate results we later use in those two chain sections. Some of these
intermediate results also have interesting combinatorial meanings and we
explore some of these in this paper. The central single chain results for the
partition function of a walk with one end attached, Z2r(k), and both ends
attached to the surface, Z2r(k), are given by

and

respectively.
We now summarise the most important results for the vesicle

scenarios. We shall denote the partition function for vesicles of length t + 2
beginning at height xi+1 and ending at height xf+ 1 by Z t ( x f | xi; K).
(Generically in this paper we shall use the superscript V to denote quan-
tities associated with vesicles, ff for quantities associated with one walker
(a single polymer chain) and y for quantities associated with two walkers
(polymer chains). Also, we shall use an acute accent for quantities
associated with walkers attached to the surface from one end with the other
end free (summed over), while the hat shall denote cases where both ends
are fixed to a surface.) In this paper we obtain exact expressions for these
partition functions, as well as the special cases when one end of the vesicle
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is grafted to the wall and the other is either free to move, Z 2 r ( K ) , or fixed
at distance xf from the wall, Z t ( x f | 0; K). In the latter case

where q = 1(t — x f). When one end is free we find, for t even,

where Cr is the rth Catalan number,

and Z2 r + 1(K) is given by the same formula with Cr replaced by C r+1 . If
both ends are fixed on the wall we obtain, setting x f=0 in (1.3),

The above sums have hypergeometric terms and using a program of
Paule and Schorn,(6) which is an implementation of Zeilberger's algo-
rithm (7 ,8) we find, writing Z r ( K ) = z2r(k) or Z2 r(K), that in both cases

where in the first case g(K) = h(K) = 1 and in the second case

It follows that, for t -» oo, the partition functions have the asymptotic
forms3

3 Note, in this paper we take f(x) ~ g(x) to mean limx->x0 f/g = constant = 0 (rather than
one). This avoids the frequent introduction of constants.



Directed Vesicles and Chains near an Attractive Wall

Table 1. Summary of Vesicle Growth Parameter
and Critical Exponents

K<2

K = 2

K> 2

V

4
4

2KlJk - 1

g\\

-5
-3
_ 3

g\

-3
-2
_ 3

As

0

*1

which yields g1= — 3 for p = 2. Fisher(9) also considered the effect of an
attractive wall on a single chain but his "necklace" technique does not
extend to vesicles. It is one of the main purposes of this paper to illustrate
a powerful combinatorial technique(11) known as a "constant term for-
mula" which we have used to obtain equations (1.3) and (1.4). The growth
factor for K < 2 is the same as for a vesicle with no wall. However when
K > 2 the asymptotic form is dominated by the solution of the homoge-
neous part of (1.7) and has a factor 2 arising from the entropy of the chain
which is furthest from the wall and a temperature dependent factor arising
from the nearest chain, a macroscopic part of which is adsorbed onto the
wall. As K -> oo the adsorption becomes complete leaving only the Boltzmann
factor K1/2 arising from the single configuration with half of the monomers
adsorbed and the entropy of a single chain.

In the adsorbed region the critical exponent is independent of whether
or not the end of the vesicle is fixed to the surface or free to move, and is
equal to that of a single chain with both ends grafted onto the surface in
the desorbed regime. We find g = - 3 which agrees with setting p = 1 in the
g11 formula of (1.10). At the critical point, k = 2, we shall show that
Z t ( 2 ) = Z t ( 1 ) in agreement with g 1 1 ( K = 2) = g1(k = 1). Also we show
that Z t ( 2 ) is equal to the K = 1 partition function of a two-chain star
polymer attached to the wall for which the exponent, g = — 2, was given by
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where the growth parameter ^ and exponents g 1 , g 1 1 are given in Table I.
The notation y1 — 1 and y11 — 1 are often also used in place of g1 and g11

respectively.
Notice that the growth parameter and exponents for K < 2 are inde-

pendent of K and hence must have their K = 1 values. Fisher(9) solved the
K = 1 problem for fixed xf in the continuum limit when the walks become
Brownian motion paths and the exponent we find for the discrete problem
is in agreement with his. Fisher's work on one and two walkers was
generalised to p walkers by Forrester(10) who found
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Forrester.(10) These results are respectively special cases of equations (4.16)
and (4.14) with K= 1.

The critical point may be characterized as the temperature lower than
which the expected number of adsorbed monomers, <m> t (xf |0; K)
becomes of order t. This quantity may be obtained in the usual way by dif-
ferentiating the partition function. Thus, for fixed xf, with the definition

where i/'t(x
f |0; m) is the set of vesicle configurations with m adsorbed

monomers, we have

where

An explicit formula for M t ( x f | 0; K) may be obtained by differentiating
(1.3) and, for xf=0, from an asymptotic analysis of the recurrence relation
which results from using Zeilberger's algorithm we find, on dividing by
Zt (0 | 0; K),

where the values of the "adsorption" exponent As are listed in Table I. This
exponent is equal to the "crossover" exponent js (defined below) when
K = 2. The same result is found for the case when one end is free by using
(1.4).

The scaling theory which applies near the binding transition has been
discussed in the case of the adsorption of undirected polymer chains by
Eisenreigler et al.(5,12,13) For the present problem we find the following
scaling forms which are valid for K -> 2 and t -> oo. When both ends of the
vesicle are grafted to the surface

where g11 = —3, the value of g11 at K = 2, and < s = 1 / 2 . Also, as
expected,(14) the scaling function p ^ ( z ) is an entire function with
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The symbol « defines the assumed two-variable scaling conditions
associated with critical points.(14)

There is a similar scaling form in the case of a vesicle with one free end
with gc = — 2 and p " ( z ) replaced by

Notice that the factor multiplying K — 2 in the argument of the (p functions
comes from < m > t ( k = 2). These scaling forms together imply all of the
data in Table I. The complete scaling functions are defined in terms of
integrals given in Section 4.

The grand partition function is often used as a computational aid in
the theory of polymer adsorption.(5) This is defined by

where u is called the length fugacity. It may be deduced from the form of
Z t ( K ) that G ^ ( u , K ) is singular at u = uc= 1\n which is physically the
value of u at which the expected polymer length diverges. The form of
Z t ( K ) as t-» oo implies that as u approaches uc from below

where the critical exponent y1 = 1+g1 . Note, y1 takes on three values,
y1, yc and y+ depending on whether K>2, K = 2 or K < 2 respectively.

Near the critical point, (K = 2, u = 1), the grand partition function has
the scaling form

where 1^(z) is the scaling function, and yc = gc + 1. The grand partition
function when both ends are grafted to the surface has a similar form with
\j^ replaced by ^v.

In Section 2 we write down the partial difference equations to be
satisfied by the single chain and vesicle partition functions. In Section 3 we
illustrate the use of the constant term method in the case of a single chain
and in Section 4 the method is used to produce explicit formulae for the
vesicle partition functions. In both cases we deduce the recurrence relations
which lead to the determination of the critical exponents and scaling forms.



2. PARTIAL DIFFERENCE EQUATIONS

This section contains the partial difference equations for the partition
functions of a single chain and vesicle near an attracting wall on the directed
square lattice. Our approach to the vesicle problem will be to first solve the
problem of a single chain near an attracting wall using techniques which
have immediate extensions to the problem of two non-intersecting chains.
The vesicle partition function is then a special case of that for two chains.

2.1. Single Chain

A vesicle is constructed from two chains only one of which makes con-
tacts with the wall so here we consider a single polymer chain (one walker)
of length t (having t+1 monomers) which starts at xi > 0 and terminates
at xf > 0. For given xf the partition function Z t ( x f | X i ; K ) is defined by
(1.11) with the set of vesicle configurations replaced by chain configura-
tions. Since a chain of length t can be made by appending a single step to
a chain of length t — 1 we get the partial difference equations

These equations may be programmed recursively to obtain Zt (xf | xi; K)
for increasing values of t and the computing time is polynomial in the
length t. From the exact solution (given below) or by iterating the dif-
ference equations, the first few terms when the chain starts and ends on the
wall are given in Appendix B.

2.2. Two Chains and Vesicles

In calculating the vesicle partition function it is necessary to consider
the configurations of two polymer chains of length t the first of which goes
from xi > 0 to xf without crossing the wall and the second goes from x2
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where the last equation is the initial condition which can also be rewritten
more compactly as
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to xf, where all intermediate positions satisfy x 2>x 1 > 0, that is, without
touching the first walk. For fixed final positions, and for t > 0, the partition
function Z t ( x f , xf | xi, x2; K) satisfies the partial difference equation

and for t = 0,

Equation (2.7) ensures the walkers never cross. The last equation is the
initial condition. For any given initial and final positions the partition func-
tion may again be computed from these equations in a time which is poly-
nomial in t. We now illustrate this in the case of vesicles for which
x2 = x i + 2 and x f =x f +2. Thus the partition function defined in the
introduction for which the initial monomer of the lower chain is grafted to
the surface and the other end is fixed at distance x is obtained by setting
x f=x and calculating

using the above equations. The first few terms given in the Appendix B.

3. A SINGLE CHAIN NEAR AN ATTRACTIVE WALL

The problem of a single chain interacting with a wall has been tackled
previously using different underlying polymer configurations: these being
partially-directed walks and restricted Solid-on-Solid walks (see ref. 2 and
references therein). It has also been analysed via continuum models.(5)

The results in this section are new for fully-directed walks on a square
lattice rotated through 45 degrees. Of course, any universal quantities such
as exponents and scaling functions are expected to be the same as those
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derived previously for the other underlying geometric configurations. We
show this is the case. However, the value in explicitly deriving these univer-
sal results again is many fold. Firstly, we confirm universality as mentioned
above. More importantly, the method as applied to a single chain is of
pedagogical value as it demonstrates simply the salient features that are
used to solve the vesicle problems and will be used in the future to solve
even more complicated cases. Further, several intermediate results are the
starting points for further combinatorial investigations and the solution of
the vesicle case.

In this section an explicit formula is obtained for the partition function
defined by the equations of Section 2.1 using a method which can be
generalized to more than one chain.

3.1. Solution of a Single Chain with Both Ends Fixed

3.1.1 . Derivation of Zt (xf |xI; K). To solve (2.1) we begin by
separating the variables with a trial solution of Z t ( x | xi; k) = P t ( x , k ) =
At exp(ikx) which requires

If we substitute this trial solution into (2.2) then the equation is satisfied
only provided A = Ap = K/^/K — 1 and exp(ikp) = ^/K— 1. This gives us
a particular solution. However, P t ( x , k ) = At exp(ikx) and P t ( x , — k ) =
At exp(-ikx) satisfy the bulk equation so we try a more general form of
solution, Rt(x, k) = l ( k ) t (jt(k) exp(ikx) + B ( k ) exp( - i kx ) ) for Zt (x | xi; K).
If this is substituted into (2.2) then we must have ,A/B = f ( e i k ) , where the
"surface scattering" amplitude, f ( z ) is given by

Thus the most general form of the solution for Z t ( x | xi; K) satisfying the
bulk and boundary equations is
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It remains to choose the two arbitrary constants B ( k ) and % such that the
initial condition (2.3) is satisfied. If we choose B = B 0 [ e x p ( i k x i ) + y ( e - i k )
x exp(— ikx i)] and call the integral with that choice in (3.3), Kt(x | x i ) ,
then by a few changes of variable we can rewrite the integral as

When t = 0 this integral can be evaluated using the contour illustrated in
Fig. 2. It has a pole at

We find that

where 0 is the Heaviside step function. The last term arising from the
residue of the pole. Thus we see that in order to satisfy (2.3) we have two
cases depending on whether K is greater than or less than 2, i.e. whether the
pole is outside or inside the contour. Case a: 1 < K < 2 — no interior pole
(unbound phase). In this case we must have %=0 and B0= 1/2n. Case b:

Fig. 2. The contour and pole structure in the complex k-plane, used to evaluate the
integral (3.4).
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K > 2 — an interior pole (bound phase). In this case we must have
B0 = 1/2n and

We denote the solution which satisfies (2.3), the initial condition, by
Z t ( x | xi; K) = S t (x |xi; K). For 1 < K < 2, to find S t(x | xi; K) for t > 0 we
need to evaluate the integral in (3.4) by a different means. First, make the
change in variable to z = exp(ik), then expand the denominator of the y
amplitude to give

Now, using the result §|z| = 1 Z
M dz/z = 2ni d ( M , 0 ) , with M an integer, as

well as the fact that the last term vanishes, gives

where

and

Since the binomial coefficients vanish outside their natural domain of
definition S t (x | xi; K) is, as expected, a polynomial in K. Also note that
t + xi± xf is always even due to the formulation of the problem we have
chosen. Now, since S(0)(xf | xi) is simply the K — 0 value of S t ( x f | xi; K) it
is therefore the number of walks which avoid the wall. Hence we can also
interpret S (1)(x f | xi; K) as the partition function for walks which touch the
wall at least once. These equations correctly reproduce the t < 10 polyno-
mials given in Appendix B so that although they were derived for 1 < K < 2
they are therefore valid for all K. Note that equation (3.10) follows from the
well-known reflection principle.(15)
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In conclusion, our solution is

where S,(xf | xi; K) is given in equations (3.9), (3.10) and (3.11).

3.1.2. The Constant Term Formulation. We illustrate the
method for a single chain. The action of the integral in (3.8) is formally
equivalent to extracting the constant term of the integrand in (3.4). If
z :=exp(ik) is regarded as a formal variable then

where CT[ • ] denotes the constant term of the argument, i.e., the coefficient
of z0. Separating the parts which correspond to walks which touch the wall,
and those that do not, gives the k = 0 term as

and the complement as

where

When K = 2, D(z) = 1 and we obtain the simple form

This result has an interesting combinatorial interpretation—see Section 3.4.
For future reference we note from (3.15) that S (1 )(x f | xi; K) depends on xi

and xf only through their sum (xf + x i) , so that

3.1.3. Formulae for Walks Beginning on the Surface. Inter-
esting and convenient formulae can be obtained for the special cases where
walks begin at the surface, that is xi = 0. Let us define
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which is proportional to the partition function for walks that finish at xf

after beginning at 0 (by definition this implies that the walks touch the
surface), where

Using (3.15) we have

Expanding the denominator in (3.21) gives

However we note

so that we can identify the coefficient

of Km in the expansion (3.22) of U t ( X ; K) as U t(x + 2m;0). Hence we can
write

The fact that the expansion of U t ( X ; K} in the variable K has as its coef-
ficients positive numbers suggests they have a combinatorial interpretation.
Indeed they can be interpreted in terms of "terraced walks".(16)

We will use the function U t(x; K) as the basis for our analysis of the
behaviour of Z2 r(K), the partition function for walks that begin and end on
the surface. We have from (3.19),
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with

For Zt (K), the partition function for walks that start on the surface with
the other end free (i.e. summed over), we have

3.2. Single Chain with Both Ends Fixed, One End on the
Surface: Recurrence Relations and Critical Exponents

From inspection of (3.26) and (3.27) we see that Ut(0; K) is a sum of
hypergeometric terms and the same can be seen for the more general
U t ( X ; K) by inspecting the combination of (3.25) with (3.23). Using
Zeilberger's algorithm(7) U t ( X ; K) is found, for t > x, to satisfy the recur-
rence relation

where

with

and U t ( t ; K) = 1. Equation (3.29) has a direct combinatorial derivation.(16)

In Appendix A we show that the equation

has two solutions with the asymptotic form
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where the constant p may take values p1 and p2 with corresponding
exponents g' and g" obtained from the expansions

In the case that p1 = p2 it is shown that the critical exponent may take
values g' or g" + 1 normally depending on which of these values is greater.
Now

and

Since H(r) = A2r(x; K)/(K — 1) we find

It is interesting to note that to order 1/r the coefficients are independent of
K and x as expected from universality but the order 1/r2 term is a rational
function of both of these variables. This will also be true of all subsequent
recurrence relations to be considered. Setting ur= U2 r(x; K) or U 2 r + 1 (x; K),
depending on whether x is even or odd, gives G(r) = K 2 / (k - 1) and the
critical parameters are therefore p1 = K2/(K — 1), p2 = 4, g' = 0 and g" = — 3.
The value p1 in the regime K > 1 is convex having its minimum value 4
when K — 2. For K < 2, p1 is decreasing and since from its definition the par-
tition function increases with K the asymptotic behavior must be governed
by the bulk value p = p2 = 4 which is the same as when no wall is present
and the restriction to x > 0 just changes the exponent g from — 1 for a free
walk fixed at both ends to -3 in agreement with Forrester's formula (1.10)
with p — 1 . For K > 2 , p 1 is an increasing function of K and p = p1 =
KZ/(K — 1) determines the asymptotic form with exponent g = 0 correspond-
ing to a bound phase in which the walk sticks close to the wall. The critical
value k = 2 at which this binding transition takes place corresponds to the
second pole moving inside the contour in the integral formulation of the
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Table II. Summary of the Growth Parameter and Critical
Exponents for a Single Walk Grafted to a Surface at One

(Subscript 1) or Both (Subscript 11) Ends."

K<2

K = 2

K>2

M

2
2

K/^/K - 1

g11

_3

_ 1

0

g1

_1

0
0

h11
_ 3

0
1

h1

-1
1

1

a The g exponents are associated with the partition function and the h
exponents with the first moment of the distribution of the number of
contacts.

with together with Ux(x; K) = 1 gives another route to (3.17). The solution
Ut = 2t of the homogeneous equation is therefore not required in this case.
From (3.38) it follows that the critical exponent is g= — 1 which is equal
to g" +1. This is an expection to the rule found in Appendix 1 since the
solution having the more dominant exponent g' = 0 does not contribute.
The other special case is K = 1. In this case equation (3.29) gives the explicit
formula U,(x; 1)= — A t + 2 (x; 1) having the bulk critical point and expo-
nent. The exponents are summarised in Table II in the column headed g11.

for walks of length t with the beginning fixed at distance x' from the wall
and the other end free to be at any value of xf > 0. The usual "free end"
partition function Z2r(k) = Z2r(0; K) is simply a sub-case. Now using (3.9)
we can write

171

3.3. Single Chain: One End Free

We now consider the partition function

previous section. When K = 2 the relation (3.29) has a particular solution
satisfying
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where

and

Note that firstly

and that further for xi >0 the asymptotic form of S(0)(xi), which is the
K = 0 solution, as t -> oo is either sub-dominant (for K > 2) or co-dominant
(for K< 2) to S(1) (xi; K). Hence we shall examine S(1) (xi; K) more closely.

Let us choose xi = 2y to be even and t = 2r also to be even. Summing
(3.18) over (even) x f = 2 l and using (3.25) with definition (3.19) gives,
using r — y = q,

and using (3.23) we find that the inner sum telescopes to give

Application of Zeilberger's algorithm gives the same recurrence relation
(3.29) as when both ends are fixed with A t ( x ; K) replaced by

with q2r(2y; K) given by

and S (1)(2r; K) = 1 + K. The asymptotic form of q2r(2y; K) is again given by
(3.36) but now
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The discussion of the previous section therefore applies to S ( 1 ) ( 2 y ; K )
except that now g" = — 1 in agreement with the value obtained by setting
p = 1 in the formula (1.10) for g1. Comparing (3.35) and (3.48) we notice
that when K = 2 and xi = y = 0 the recurrence relation becomes the same as
for the chain with both ends attached to the wall but now the partition
function is a linear combination of both solutions. To satisfy the initial
conditions each of the two solutions has U0(0; k)=1 and the partition
function is sum of the resulting functions

The critical exponent is therefore g = 0 since the bulk solution 22r is domi-
nant. The exponents are summarised in Table II in the column headed g1.

A simpler recurrence relation results if both xi and t are allowed to
vary with q = (t — x i ) /2 fixed: now allowing t and xi to be either both odd
or both even, which implies that xf is still even.

with the boundary condition S(1)( — t; K) = (1 +k) t + 1 . However this rela-
tion cannot yield the required asymptotic form for t -> oc with xi fixed.

3.4. Single Chain: A Combinatorial Interpretation of K = 2

Let W(1)(xi, xf) be the set of all walks, from xi to xf, having t steps,
which do not cross the wall, but have at least one contact with the wall.
The contribution of such walks to the partition function is

where c is the number of contacts of the walk w with the wall other than
the last. When K = 2 each contact with the wall contributes a factor of two
to the weight of the walk. Thus a given walk with c + 1 contacts will con-
tribute 2C to the sum. Instead of considering the given walk as contributing
a weight 2c one can think of this as 2c walks each contributing weight one.
How are these 2c new walks constructed? For each contact, other than the
last, there is a factor of two, we can get two walks by counting the original
configuration as well as the walk obtained by reflecting the segment of the
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Fig. 3. The figure shows an example of one configuration of weight 22 and the correspond-
ing set of 4 walks, each of weight one, obtained by reflecting segments of the walk between
surface contacts.

walk between the contact and the next one to the right in the t-axis. This
is easiest to explain by illustration—see Fig. 3. If this reflection procedure
is carried out for each subset of the wall contacts (excluding the last), then
the resulting set of walk configurations is the set of all walks from xi -> xf

with no wall but which visit x = 0 at least once. The number of such walks
is equal to the number of walks from —xi to xf and hence we obtain
(3.17). The K = 2 partition function for a chain which starts at xi = 0 and
ends at any xf > 0 has a similar interpretation. For a configuration which
ends at x1 > 0 the last K factor may be replaced by reflecting the part of the
chain between the last contact and the terminal monomer. Configurations
which terminate at the wall have an additional factor of K which will not
be included by the reflection procedure. The partition function is therefore
the sum of the number of chains with one free end and no wall, i.e., 2t, and
the number of chains which start and end at xi = 0 with no wall, i.e., ( t /2),
which gives (3.49).

Physically we can interpret these results as corresponding to the wall
becoming completely transparent. This is somewhat analogous to what
happens at the theta point of interacting self-avoiding walks in three
dimensions were the self-avoiding walk behaves rather like a random
walk.(17) Intriguingly, this value, K = 2 is also weight generated by the
appropriate kinetic growth walk near a surface.(18)

An alternative combinatorial interpretation of the K = 2 partition func-
tion when one end is grafted to the wall follows by setting K= 1 in (3.25).
The left hand side is the required partition function giving weight one to
the grafted monomer. The right hand side is the total number of t step



walks which start at distance xi and end anywhere on or above the wall,
visiting the wall at least once.

The values of the critical exponent h11 of Mt which follow from this
recurrence relation are listed in Table II. The expected number of contacts
has critical exponent Js = h11 — g11.

3.5.2. Mean Contact Number of a Single Chain: One End
Free. The function Mt (xi; K) for a chain with one end fixed at xi, that
ends anywhere above or on the wall, is given by differentiating the sum-
mand in (3.45) with respect to K and multiplying by K, Note that S ( 0 ) ( x i )
does not depend on K. With t = 2r and xi = 2y, applying Zeilberger's algo-
rithm to the sum gives the recurrence relation
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3.5. Single Chain: The Mean Number of Contacts

The mean number of contacts for a vesicle was defined in the introduc-
tion as the ratio of Mt (xf | 0; K), given by equation (1.13), to the partition
function. A similar definition holds for a single chain.

3.5.1. Mean Contact Number of a Single Chain: Both Ends
Fixed to the Surface. When both ends are fixed Mt (xf | 0; K) is
obtained (noting (3.19)) by differentiating (3.25) with respect to K and
multiplying by K. We have done this for general xf but only give the results
for xf=x = 0 since the exponents turn out to be independent of xf as
expected:

When K = 2 this reduces to
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and if further y = 0 we obtain the explicit form

Proceeding as in the case of the partition function we find for xi = 0, with
M t ( k ) = M t (0 ; k),

where the values of h1 are given in Table II. The expected number of con-
tacts has critical exponent As = h 1 — g 1 , and satisfies AS = AS = AS. This
adsorption exponent also has the same value as for the equivalent exponent
in the case of vesicles (see Table I), as expected.

3.6. Single Chain Scaling Form Near K = 2

In the case of even t = 2r and xf= 2y we consider U2r(2y; K) and the
solution of (3.29) subject to U2r(2r; K] = 1 may then be written in the form

where co = K/(K + 1 )2 = (k — 1 )/k2. Noting that

we can analyse the scaling behavior of Z2r and Z2r via (3.28) and (3.26)
respectively.

3.6.1. Single Chain Scaling Form: Both Ends Fixed to the
Surface. Setting x = 0 in (3.30) gives A2r(0;K) = KCr_1 and hence the
partition function for chains with both ends grafted to the surface is given
by

Now for K> 1 (that is, O < eo < 1) co as a function of K passes through a
maximum at K = 2 which is the value at which the polymer first sticks to
the wall. It is a property of the Catalan numbers that for |co| < 1
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and hence

The Catalan numbers have asymptotic form

which on substitution in (3.61), replacing the sum by an integral gives

where

As K -> 2, log( l/4co) = 1(K — 2)2 and hence near the binding transition
(K -> 2 and t -» oo) the partition function has the scaling form

where

Integration by parts gives

and for z<0 the substitution u1/2= — v/z in the definition of x(z2, 1) gives

This form of ^y(z) also gives the z>0 branch correctly. Note that p y ( z }
is analytic for all z as expected.
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Now erfc( — oo) = 2, erfc(0) = 1 and (see [ 19]) for z-> oo

thus

which gives values of g11 and /* in agreement with Table II.

3.6.2. Single Chain Scaling Form: One Free End. In the case
of chains of length 2r which terminate at any even value of xf= 2l > 0, if
the initial monomer is grafted to the surface then setting jc' = 0 in (3.46)
given B2r(0; K) = (K — r(K— 1)) C r _ 1 . Substituting in (3.57) gives

and using (3.60)

where the step function is defined such that 0(0) = 1. Proceeding as in the
previous section we see that near the binding transition the partition func-
tion has the scaling form

where



Using the above properties of erfc gives values of g1 in agreement with
Table II.

Equations (3.68) and (3.75) agree with those obtained for a con-
tinuous chain interacting with a wall by Eisenreigler et al.(5) as one would
expect from universality considerations. The form (3.75) is also identical to
that calculated for the partially-directed partition function scaling form(20)

derived using the theorem of Brak and Owczarek in [14]. This then serves
as another example of the scope of this theorem.

where a — ( a 1 , cr2). and P2 = {(1,2), (2, 1)} (we use the vector notation
x = (x1 ,x2)) . This satisfies (2.5) if
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4. VESICLES NEAR AN ATTRACTIVE WALL

4.1. Constant Term Formula for the Two Chain Partition
Function.

We now derive a constant term formula for the partition function of
two chains. The formula will "automatically" produce both the method of
images involution and the Gessel-Viennot involution for non-intersecting
chains.(21) We must solve equations (2.5) to (2.7), to do this we try the
Ansatz

Equation (2.6) is satisfied provided
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where £f(z) is defined by (3.2). Thus we have the general solution

where

Once again we choose , S ( k 1 , k 2 ) as 1/2n times the complex conjugate of
&(k1 , k2). This gives an integrand with 64 terms. As in the case for a single
chain the number of terms can be reduced, resulting in an integral over
only eight terms. Thus we obtain the result

where

and zj=eik
j with zj= 1 /Z j . Each term can be interpreted diagrammatically

as shown in Fig. 4. Combining the terms illustrated in the figure leads to
the determinantal form

If we generate on t then, with G f ( x f | xi; u, k) = ̂ t>0 Z t ( x f | xi; K) ut, we
get
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Fig. 4. (a) All eight terms of the constant term formula for vesicles—each horizontal line
represents a directed walk with no constraints, (b) Pairs of terms can be combined and inter-
preted as one walker not going below the wall—this is the method of images involution,
(c) All eight terms can be combined into two terms (of two factors each—each of which
represents a walker not going below the wall)—these two terms give correspond the determi-
nant for non-intersecting walkers.

4.2. Explicit Form of the Partition Function for Vesicles
Grafted to a Wall.

As a first step of finding the partition function for vesicles with one or
both ends attached to the wall we set xi = 0 and x2 = 2 in the formulae of
the previous section. The determinant in (4.10) may then be evaluated to
give a simple generalisation of the constant term formula for a single chain
attached to the wall. As in the case of the one chain problem we also
remove a factor of K, which is always present for vesicles attached to the
wall. Defining a specialised partition function by

gives

where D(z) is given by (3.16) and /i = zi + zi. Expanding the denominators
in Z)(z1) and D(z2) shows that Ut(x1, x2; K) may be expressed in powers of
k with the coefficients determined by the "K = 1" solution
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For a vesicle we write x = x1 = x2 — 2 and separating the m = 0 term the
partition function may be written in the equivalent form

where U t ( x 1 , x 2 ; K ) is defined in terms of the constant term formula (4.13).
If we formally extend the definition of U,(x, x + 2; k) to x1 > x2 using

(4.13) then it follows that U t ( x 1 , x2; K) = — U t ( x 2 , x1; K). Using this shows
that the second summation in (4.15) is zero and thus we obtain the final
result

The general vesicle partition function is

Hence the partition function for vesicles started at the surface and finishing
at some height is

Also, we have

Further

and so
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Notice that the sum in (4.16) is finite since the summand vanishes for
x + 2n>t. To determine the summand in (4.16) we set k = 0 in (4.13) to
obtain the constant term form

Taking the constant term after expanding the brackets gives a sum of
sixteen products of binomial coeffients which simplifies to

which together with (4.16) gives formula (1.3) for Z t ( x | 0; K). For vesicles
of even length t = 2r ending anywhere the partition function Z2r(k) may be
found by summing (4.16) over even values of x from 0 to 2r. With the aid
of Zeilberger's algorithm this gives,

where Cr is defined by (1.5), which is equation (1.4). Similarly, for vesicles
of odd length, summing (4.16) over odd values of x from 1 to 2r + 1 gives

We note that the above, together with (3.26), shows the following relations

4.3. Recurrence Relations and Critical Exponents for Vesicles
Grafted to a Wall.

As in the case of a single walk the critical exponents are most easily
found from recurrence relations. From equations (4.16) and (4.23) we see
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that Ut(x, x + 2; k) is a sum of hypergeometric terms and Zeilberger's algo-
rithm may therefore be used to find its recurrence relation. We find

where

and

with B0 = 6 and U0(0, 2; K) = 1. This may be written in the form (1.7)
quoted in the introduction. In the notation of Appendix 1,

where p1 =4k2/k. The corresponding exponent g' = — 3. Also

so that p2 = 16 and g' = — 5. Similarly, for vesicles with one end free, we
find the recurrence relation for

to be

and so

Here Aeven = (r + 1) C2 and hence
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This result may be rearranged to give equation (1.7) with g(K) = h(K) = 1.
Similarly,

where Aodd = (r + 2) CrCr + 1 and hence

This result is similar to but not exactly of the form (1.7). The asymptotic
form of the solution in the case of vesicles of even length is determined by

which is asymptotically the same as when both ends are fixed, and

so that again p2 = 16 but g" = — 3. For vesicles of odd length the relevant
ratios are

which have the same asymptotic forms as in the even case. Using the same
argument as for a single chain the asymptotic form of the partition func-
tions is determined by p2 for K>2 and p1 for K>2 so that again the bind-
ing transition is at K = 2. In the case K < 2 the exponents agree with the
K= 1 result of equation (1.10).

When K = 2 and x f =0, that is we try a solution for Z 2 r ( 2 ) = 2ur, the
solutions of the inhomogeneous and homogeneous equations may be seen
to satisfy the relations

respectively. Only the first of these solutions is required to match the coef-
ficients and has p = 16 and g = — 3 which is not equal to g" + 1 due to the
vanishing of h ( K ) at the transition point. Similarly for vesicles with one end
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free and K = 2, that is, we try a solution for Z2r(2) = 2vr, the coefficients are
generated by the first of the two solutions satisfying the relations

and hence the asymptotic form of vr has parameters p = 16 and g= — 2
which this time is equal to g" + 1. The critical exponents are summarised
in Table I.

We noted that when K = 1 or 2, vesicles which start and end at the
wall satisfy first order recurrence relations. We now give the generalisation
of these relations to vesicles which terminate at arbitrary fixed xf:

In both cases Z t ( x f |0; 1) is zero for t<xf which is consistent with the
zeros of the denominator. The critical points and exponents are indepen-
dent of xf.

4.4. Vesicles: The Mean Number of Contacts

4.4.1. The Mean Number of Contacts of Vesicles: One End
Free. Differentiating (1.4) with respect to log K gives M t ( K ) , and apply-
ing Zeilberger's algorithm to the resulting sum gives

which, applying the analysis of Appendix A, yields critical exponents which
give rise to the values of As in Table I.

4.4.2. The Mean Number of Contacts of Vesicles: Both
Ends Fixed to the Surface. The same procedure applied to (1.3) with
x = 0 gives the rather more complicated expression
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where

When K = 2 this simplifies to

The critical exponents derived from these equations give the same values of
As as when one end of the vesicle is free. Similar equations may be obtained
for x > 0 but this would not be expected to change the critical behavior by
analogy with the single chain calculations.

4.5. Vesicles: Scaling Form Near K = 2

We first consider the free energy of vesicles with one free end. The scal-
ing form of Z 2 r ( K ) may be derived from that of Z 2 r ( K ) since solving (4.33)
we find

which on comparison with (3.59) shows that

and this agrees with the previously noted relation (4.26). Combining (4.49),
(3.65) and (3.62) gives the scaling form

where ( p * = p f f and using (3.66) gives values of g1 in agreement with
Table I. Note, at a mathematical level the equality of the scaling functions
for a single chain attached at both ends and the scaling function for vesicles
fixed at one end whose other end is free (summed over) arises from the
functional relation (4.49) between the associated partition functions.
However, one would expect the equality of the scaling functions should be
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independent, via universality, of this particular relationship and hence be
based on some physical argument. What this physical argument might be
is unclear to us.

Using Z2 r + 1(k) = (Cr + 1 / k )Z 2 r + 2 (k ) gives the same scaling form for
Z2r+1(k) and hence we have the general form (1.15) with cp^ replaced by
j>^ of equation (1.17). The asymptotic form given in (1.17) follows from
(3.70).

To find the partition function when both ends are grafted to the
surface we substitute

into (4.27) and solving the resulting difference equation gives

Following the analysis for a single walker this leads to the following scaling
form near the binding transition,

where for z < 0

and substituting u1/2= —v/z gives
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which provides the continuation to z > 0. Using the properties of the erfc
function, equation (3.69) and before, gives the asymptotic forms

which is in agreement with the form (1.15) quoted in the introduction.
These forms also confirm the critical exponents in Table I which we pre-
viously obtained from the recurrence relation.

APPENDIX A. CRITICAL EXPONENTS FROM RECURRENCE
RELATIONS

The recurrence relations which arise in this paper are of the form

which we rewrite as

or as the equivalent second order relation

Here G(r) = g ( r ) / f ( r ) and H(r) = h(r)/f(r) are rational functions which
may be expanded to give the asymptotic forms

We seek solutions having the asymptotic form ur~prrg. Substitution in
(A.3) and expanding the coefficients to order 1 /r2 gives
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where

with g1 : = g ' , g 2 : = g " , h 1 : = h',h2: = h" and

Equating the constant terms in (A.5) gives a quadratic p having roots p1

and p2. Setting p = pi in the coefficient of 1/r gives (p1 — p2)(g — gi) = 0. If
/?1 = p2 then the exponent corresponding to pi is gi. On the other hand, if
the roots are equal then the coefficient of 1/r is automatically zero and
equating the coefficient of 1/r2 to zero gives a quadratic for g having solutions
g = g' and g = g" + 1 and the asymptotic form of ur will be governed by the
larger of these two values. Notice that h' and h" cancel out at this order.

APPENDIX B. PARTITION FUNCTION POLYNOMIALS

B.1. Single Chain Starting and Ending on the Wall

B.2. Single Chain Starting at the Wall eand Ending at x' = 2



B.5. Vesicle with one End Free
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B.3. Single Chain Starting and Ending at x = 2

B.4. Vesicle Grafted to the Wall at each End
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